- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Product of slopes of common tangents to the ellipse $\frac{x^2}{32} + \frac{y^2}{8} = 1$ and parabola $y^2 = 8x$ is -
A
$\frac{1}{8}$
B
$-\frac{1}{2}$
C
$\frac{1}{4}$
D
$-\frac{1}{4}$
Solution
$y=m x+\frac{2}{m} ; y=m x \pm \sqrt{32 m^{2}+8}$
$\therefore \frac{2}{\mathrm{m}}=\pm \sqrt{32 \mathrm{m}^{2}+8}$
$\Rightarrow \frac{4}{m^{2}}=32 m^{2}+8$
$ \Rightarrow 1=8 m^{4}+2 m^{2}$
$\Rightarrow \mathrm{m}^{2}=-\frac{1}{2} ; \mathrm{m}^{2}=\frac{1}{4} $
$\Rightarrow \mathrm{m}=\frac{1}{2} \mathrm{or}-\frac{1}{2}$
$\therefore$ Product $=-\frac{1}{4}$
Standard 11
Mathematics